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Foreword
The results contained in this paper are being submitted for journal publi-
cation under an abbreviated format. Issued as a Research Report, this material
constitutes a preprint and is given limited distribution in order to provide an early

dissemination of current information.




NSl 17774 ABSTRACT

The theoretical photodetachment cross section for the negative atomic oxy- .
gen ion in its normal ground state, (ls)2 (25)2 (2p)5, has been investigated for the
three transitions; O~ (2P) +hv-> O (3P) +e, O (2P) +hv=> 0O (] D) +e, and
o (2P) +hv—> O (]S) + e in the photon energy range up to 12 ev. In addition,
the scattering cross section for the neutral oxygen atom, the polarizability, the
attachment cross section and the attachment coefficient have also been determined.
Results are compared with available experimental and other theoretical data. Ex-
cellent agreement has been obtained with the latest reliable experimental data.

The Hartree-Fock treatment utilizing a modified form of the Slater approxi-
mation for exchange was used to compute the bound state radial functions for the
neutral atom and negative ion. The polarization potential was developed from
first order perturbation theory in conjunction with the adiabatic approximation.

The continuum wave functions for the outgoing electron were derived from Schro-
dinger's equation utilizing the modified Hartree-Fock-Slater and polarization
potentials.

The agreement of the photodetachment and neutral atomic oxygen cross
sections with experimental data as well as the agreement of the polarizability

calculation with experiment is a most favorable indication for the validity of this

work, &M ((/ﬂ
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CHAPTER |

GENERAL INTRODUCTION

An atom or molecule may absorb a photon of sufficient energy so that a
bound electron may be removed and become free. The absorption of such a photon
of energy hy by a negative ion N leads to the production of a neutral atom or

molecule N° and a free electron with velocity v,
hv+N - N +e. (1.1)

The resulting free electron will have a translational energy equal to the difference
between the photon energy and the energy expended in removing the electron from
the negative ion. If Eb is the binding energy of the electron, then

hv = Eb + mv2/2, (1.2)

where it.is assumed that the neutral atom or molecule is so massive compared with
the electron that the kinetic energy of the final neutral state may be ignored.

This process, whereby a negative ion absorbs a photon causing an electron
to undergo a transition from a bound state to the continuum, is known as photo-~
detachment. The initial state is a negative ion in a radiation field and the final
state is a neutral atom or molecule and a free electron. |f a beam of radiation
passes through a gas composed of negative ions, the ions act as though they had
a cross section cPD(\)) (photodetachment) for the incoming photons of energy hv,
This cross section is defined in such a way that each encounter between an ion and

a photon removes a photon from the beam. ] Thus, light of frequency v is reduced

Is. s. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities,
Addison-Wesley, Reading, Mass., 1959, p. 162.




by a facfor2 exp(crPD \)nt) in passing through a gas of thickness t containing n
atoms per cubic cen'rilmefer. In practice,3 a beam of mass-separated negative ions
is irradiated with a light source of known spectral intensity distribution. In the
region of intersection between the photon and the ion beams a current of free
electrons is produced. This current may then be measured and used to calculate
the photodetachment cross section as a function of the incident photon energy.
This paper is concerned with the theoretical calculation of this photodetachment
cross section %p*

In particular, this paper is concerned with the calculation of electron
photodetachment from the negative oxygen ion, O . Considerable efforts have
recently been directed toward obtaining good theoretical calculations and im-
proved experimental measurements of the photodetachment cross section at diffe-
rent wv;:velengfl'\s.“}-9 The work reported here was initiated in order to (1) gain a
better understanding of the importance of various parameters in the calculation of
photodetachment cross sections, and (2) hopefully obtain better agreement between
theory and experiment. It is to be noted that excellent agreement between the
present work and the latest reliable experimental data has been obtained.

The early development of related negative ion processes for atomic and

molecular oxygen as applicable to the formulation of the present problem is given

2D. R. Bates, Monthly Notices, Roy. Astron. Soc. 109, 432 (1946).

3s. J. Smith and L. M. Branscomb, Rev. Sci. Inst. 31, 733 (1960).
4J. W. Cooper and J. B. Martin, Phys. Rev. 123, 1482 (1962).
SL. M. Branscomb and S. J. Smith, Phys. Rev. 98, 1127 (1955).
OM. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1115 (1958).

L. M. Branscomb, D. S. Bruch, S. J. Smith, and Sydney Geltman, Phys. Rev.
111, 504 (1958).

8L. M. Branscomb, S. J. Smith, and G. Tisone, J. Chem. Phys. (to be published)
(1965).

9s. J. Smith, in Proc. Fourth Int'l. Conf. on lonization Phenomena in Gases,
Uppsala, 1959, edited by N. R. Nilsson (North-Holland Publishing Co.,
Amsterdam, 1960), p. 219.




by Bates and Massey. 10 The experimental study of photodetachment processes
originated in 1‘5’53.3 These first laboratory observations were concerned with nega-
tive hydrogen ions and soon afterwards cross sections were determined for negative
ions of other gases. Only recenf|y3 has improved and relatively sophisticated in-
strumentation become available enabling more reliable measurements to be made

of the photodetachment cross section. All the published work done in this connec-
tion has been by Branscomb, Smith, et al., of the National Bureau of Standards.
Their latest data on oxygen are presently unpublished,8 but the results will be given
in this paper for comparison with the results of the present theoretical work.

In order to adequately introduce the present work, it is felt necessary to
briefly sketch the need for such calculations. Emphasis on photodetachment or
negative ion bound-free transitions has, in the past, been placed largely on atomic
hydrogen. This is important in astrophysics because quanta of energy in the ultra-
violet, visible and near infrared spectral regions can photodissociate the hydrogen
ion into a neutral hydrogen atom and a free electron. These negative ions of
hydrogen account for most of the continuous absorption in late-type stars. 1 Specu-
lation as to the astrophysical importance of O™ absorption has been suggesfed,7 but
a more recent commentary” states that it is unlikely that this is important in any
of the stars.

The absorption of continuous radiation by O™ accounts for the release of
electrons and destruction of negative ions in the sunlit ionosphere, and can be a
source of opacity in certain regions of the spectrum for high temperature plasmas
or gas caps containing oxygen. In order to completely understand the earth's
upper atmosphere it is necessary to know the photoabsorption cross section of the

12-14

various gaseous constituents. Aiomic oxygen is important since it is the

]ODo R. Bates and H. S. W. Massey, Trans. Roy. Soc. (London) A239,269 (1943).

e w. Aller, Astrophysics, The Atmospheres of the Sun and Stars, Ronald Press
New York (1963), p. 194.

]2P. J. Nawrocki and R. Papa, Atmospheric Processes, Geophysics Corporation
of America, GCA No. 61-37-A, Bedford, Massachusetts (1961).

13D, R. Batesand H. S. W. Massey, Trans. Roy. Soc. A192, 1 (1947).
14R. B. Crains and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).




dominant constituent above 160 km. The theoretical background for interpreting
and understanding the physical processes capable of producing radiation in the hot
flow field surrounding a reentering ballistic vehicle comes, in part, from the bound-
free continuum of negative ions. 15 The photodetachment cross section is of parti=-
cular interest in connection with emissivity calculations for heated air.] Compari-
son of experimental and calculated values of the photodetachment cross section are
also very valuable in the theoretical study and modeling of related effects which
do not readily lend themselves to experimental invesi'igmtion.,7 Such difficulties
necessitate the need for good theoretical calculations.

Various semitheoretical models presently exist for computing photodetach-

416,9,10 Cooper and Man‘in4 have stated, "Our understanding

ment cross sections.
of the related processes of ... photodetachment from negative ions is at present
fragmentary. Even though much progress has been made ... for the important case
of atomic hydrogen, little has been done for heavier atomic systems.”" These various
methods and the subsequent results will be discussed and compared with available
experimental data along with the results of this paper. The primary difficulty in
treating such problems is in determining the distortion of the wave functions of the
neutral atom by the outgoing electron and calculating the resulting polarization
potential. The photodetachment cross section is very sensitive to this term in the
total final state interaction. Because of its importance, this paper will review
briefly a recently developed method]6 for determining the polarization potential.
This method is used in the present calculations and results in excellent agreement
being obtained with the latest reliable experimental data. The development of the
present model will be given in considerable detail with emphasis on the develop-

ment of the

he polari otential, continuum wave functions and bound state radial

functions for O .

1. 6. Breene, Jr., RVIP Reentry Radiation Measurements. A Theoretical Back-
ground (U), Physical Studies, Inc., SR No. 1, Kettering, Ohio (1964).

1%W. R. Garrett, Phys. Rev. 140, A705, (1965).
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In addition, the elastic scattering cross section for the neutral oxygen atom
is calculated and compared with various other theoretical and experimental results.
This is computed by calculating the phase shifts of the partial waves at various
electron energies. The attachment coefficient, ay is also calculated as a function
of electron energy for atomic oxygen. This is given by vo, where v is the velo-
city of the incident electron and Op is the cross section for the capture of an in-
cident electron of energy mv2/2 into a level belonging to the ground state of O~
by a normal O atom. This is important in the study of the formation of negative
oxygen ions]0 and again finds application in our understanding the ionosphere.
The relation between photodetachment and electron absorption cross sections may
be derived by considering detailed balancing at equilibrium between electron cap-

ture and photoionization.



CHAPTER 1i

DEVELOPMENT OF THE CROSS SECTION EQUATION

1. Introduction

To compute the cross section for photodetachment the initial state is taken
as a negative ion in a radiation field and the final state is a neutral atom and a
free electron. The electromagnetic energy of the radiation field acts as a small
perturbation on the negative ion and time dependent perturbation theory can be
used to calculate the probability per unit time that this perturbation will produce
a transition. This is the transition rate for absorption. An ion in a field of electro~
magnetic radiation experiences interactions between its magnetic moments and the
magnetic field and between its electric charges and the electric field. Only the
latter will be considered since the magnetic interaction is very small compared to
the electric interaction. '

The wavelengths to be considered are large compared to the dimensions of
the atom so that the electric field can be considered constant over any region
occupied by the atom. The interaction energy H' can be obtained by adopting
the Hamiltonian for a charged particle in a radiation field where the momentum
operator P is replaced by the usual expression P - eA, where A is the vector
potential. Thus the whole radiation field can be put into the vector potential
which is perpendicular to the direction of propagation. This chapter will develop
the normalized vector potential, from this find the interaction energy, then derive
the general photodetachment cross section, and finally reduce this general equation

to the particular form applicable to the present problem,



2. Vector Potential

The electromagnetic field will be treated classically by assuming that the
vector potential can be specified without any uncertainty at any space-time point
by using Maxwell's equations in free space.

In free space the vector potential can be made to satisfy

VZK - (]/CZ)K =0 and V-A =0, 2.1)
A typical plane wave solution of the above is
Alr,t) = éacosfk-r - wt) with &.k =0, (2.2)

where (a) is a constant scalar amplitude, & is a unit vector perpendicular to k and

w =ke. The electric field E=-A is
E(t) = - &ake sin(k - 1 - wt). 2.3)

The energy density is defined by the usual equation where the average energy re-

siding in the electric and magnetic fields are equal.
¢ =E.D = (I/4m)k2c2a? sin?(K - T - wt). (2.4)

and its magnitude averaged over a period (2r/w) of the oscillation gives the time

cveruge.of the energy density
¢ = (1/8n) k2. (2.5)
The photon density (pn) is the average energy density (&) divided by the energy

per photon (hck)

_ kea

P = Bl (2.6)

The amplitude a in the vector potential may thus be expressed in terms of the

photon density by normalizing to one photon per unit volume and calling this



*

volume ~.
2
1 _ keca
il = (2.7q)
Solving for a gives
_ [ 8xh 1/2
< - (2) @.7)
Then the normalized vector is
1/2
o' — A 81’?\ . - -
A(r, t) = e(cTr) cos(k * r = wt). (2.8)

3. Matrix Elements for the Transition
Expanding the above cosine term into its exponential parts and keeping only
that portion which makes the final state energy greater than the initial state energy

and leads to absorption, 15 yields

1/2
K(F,f)=e(§lc'§)/ 5 exp(ik -7 - iut). 2.9)

The Hamiltonian operator describing a charged particle in a radiation field is
ol __ 92 _
H = (/2m) [P - G0] "+ v (2.10)
Where V(f) describes the coulomb or other interactions. Expanding,
H o= (1/2m) (P2 - P+ & - eA-F + e2A)) + V(7).
Now in the present gage
P-A-A-P)Y =-ih{v.(AY) - A-W} = -ih(v- Ay = 0. (2.11)

Thus

H=H_ - (e/mP-& + (5/2m) A%, 2.12)

*
The normalized volumes will be carried because of their units.



where Ho is the unperturbed Hamiltonian. Making the usual assumption that

(e/m)P- A > (e2/2m) AZ, 2.13)

then

. /2
H' = -(e/m)P R = -(e/m) (8 T‘) PotepliReT - ol (2.14)

ke

and the matrix elements for the transition probabilities are, considering only one

component of P and taking exp(ik *r) = 1 (dipole approximation).

|H' I2 - 21re2‘h

|<F|P |'>|2 (2.15)
mZker x!'71 )

But]7

<flp li>= imup<F|x|i>,

since |<r>|2 = |<x>|2 + |<y>|2 + |<z>|2 and on the average all are equal then
|<r>|2 = 3|<x>|2 and it follows that

W
Hel? = ——F |<tieti>]2 (2.16)

4. General Cross Section Equation
The transition rate or transition probability per unit time for absorption of a
quantum of energy hw from the radiation field and finding the system in the desired

final state is given by the familiar expression

W= 2R e@), 2.17)
where p(E) is the density of final states for the electrons and is given by
3= 3,2
o(E) dE = L°dP _ L"P“dPdQ (2.18)

@3 (23

WL. |. Schiff, Quantum Mechanics, McGraw-Hill Book Co., Inc., New York,
1955, p. 261,
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where L3 represents the volume that confines the particle in the energy range dE
and dQ is the solid angle into which the ejected electron with velocity v and

momentum P goes. Taking E = P2/2m then

@#_1
de v’
giving
3 2
L'm vdQ
(E) = —=-, (2.19)
P e
and
22 2 3 2
4" m ve UPL |<f|r|i>l
W= 3 3 (2.20)
(2nh) T
Now dividing W by the incident photon flux | gives the cross section
do =W/l where | =¢/r. (2.21)
Combining terms, the expression for the cross section becomes
2 2
me uk |<tlr]i>|
do = 5 3 dQ, (2.22)
brch

where the momentum, mv, has been written as hk.
Taking L3 as a unit volume, expressing r and L in atomic units and the

energies in Rydberg units, the above equation becomes
o = (dn/3kaa’ E +E) FG, ), (2.23)

where a is the fine structure constant and Ee is the electron energy. The quantity
F(i, f) in the above equation involves the initial and final states. Since there are
a number of initial and final states, this expression must be averaged over the

possible initial states and summed over the final states.
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p 2
Fi =0 11 |<slrli] (2.24)
b
where W, is the number of initial states and P is the oppropriate overlap integral

of the electrons which are in the same state both before and after detachment. |If

one-electron central field orbitals are used, then F is conveniently expressed as
. 2 2
F(i, f) = P(C!_]M!_l + C2+IM2+])’ (2.25)

where the CQ‘s are obtained by evaluating the angular portion of the dipole matrix

elements for each transition of interest and the MQ's are the radial integrals

@ 2
Mﬂﬂ = {; Rnl(r) r Rk,ﬁtl rdr. (2.26)

The selection rule on the azimuthal quantum number  comes from considering only
an electric dipole transition where an nf electron is removed from a bound state
orbital into the continuum. Rnl is the radial bound state orbital for the n{ electron
and Rk,fil is the radial wave function for the free electron with angular momentum

quantum number £ £ 1, Each of these is normalized so that

fo°° Rii(r) Zdr=1, (2.27a)
and
Rk,p. k—-—-—> (kr)_] {sin(kr +81 - %1)} . (2.27b)
r—a

Combining these various terms the general cross section equation may be written as

o = (4n/Han’k (€, +E)P(C, | Mi_] + oy M:';_H). (2.28)

5. O Photodetachment Cross Section

The stable bound state of the negative oxygen ion is the 2p ground state
which arises from the (1 5)2 (2 s)2 (2p)5 configuration. An electric dipole transition
is made in the photodetachment process whereby a 2p electron is removed from a

bound state crbital to a continuum state. This continuum may become either a free
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s-wave or a free d-wave depending on the final angular momentum state it occupies
since the azimuthal quantum number (1) must change by one unit for this transition.
However, for O, there are three transitions possible since the neutral oxygen atom
may be left in the 3P, 1D or 1S states after detachment. The threshold excitation
energies (Eb) for each of these are 1,465 ev, 3.432 ev and 5.66 ev respectively,.9
Because of experimental difficulties in accurately measuring the latter two, this
which occurs at

).
longer wavelengths than the other transitions. The cross section for the other states

paper will emphasize the 3P state, i.e., O_(2P1/2) - O(3P

can be obtained by using the same radial matrix elements, the appropriate angular
parts of the dipole matrix elements and the binding energies corresponding to each
threshold. This will be done and certain conclusions drawn concerning the general
behavior of the resulting cross section curves.

In order to calculate the cross section for photodetachment, integrations
must be performed over the passive electrons (overlap integral) and the active
electron. This involves calculations of the radial wave function for the bound and
free orbitals. Products of one-electron central field orbitals will be used to des-
cribe the wave function of an individual bound nl orbital for both the ion and
neutral atom. The method of calculating these functions will be described in
Chapter IV, The continuum wave functions for a given angular momentum state
are obtained by solving the Schrddinger wave equation for the free electron at the
desired electron energies in the potential field due to the residual neutral atom.
This interaction is most important and must be treated very carefully. The cross
section is extremely sensitive to the exact form of the total interaction potential.
The polarization interaction used in the calculation of the continuum wave functions
is developed in the next chapter.

The overlap integral P, previously mentioned, gives a correction to the
cross section by allowing for the distortion of the wave functions of the passive
electrons due to the ejection of the active e|ectron.3 Since product wave functions
are being used and there are four 2p electrons in the same state before and after
detachment, the square of the matrix element involving the product of each of these

gives the value of P,
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SRR ol (2.29)
[o]

This distortion is only slight and the distortion of the inner core (1s) and (2s) elec-

trons will therefore be neglected and the overlap integrals P, and st will be taken

Is
as unity.

The values of the Cj's mentioned in the previous section are determined by
considering the relative probabilities for the three transitions of O going to neutral
O plus a free electron. The following transitions are possible (see Table 1) and the
number of possible final states is given by (25 + 1) (2L + 1) which are 9, 5 and 1

1

respectively for the 3P, D, and ]S states. The relative probability for each of

these may then be taken as 1, 5/9, and 1/9 respectively. By combining the 3P,
]D and ]S states of O with first the s and then the d states of the continuum waves,
it is found that 1 and 2 states respectively exist for these additions.

The values of Co and C2 for the above three transitions are tabulated

below.
TABLE | »
" Values of Co and C2 for the Various Final State Configurations

Transition C C

o 2
0" (%P) - OCP) + e 1 2

o'(2P) - O('D) + e 5/9 10/9

0™ (%) - O('S) + e 1/9 2/9
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CHAPTER I1I

POLARIZATION POTENTIAL

1. Introduction

'™ for the theoretical calculation of photodetachment cross

Existing models
sections correct for polarization (the interaction potential due to the distortion of
the neutral atom by the outgoing electron) by semiempirical means which do not
arise naturally from the formalism of the problem. These methods have not yielded
cross sections which are in complete agreement with experiment. Results are com-
pletely unreliable if this interaction is neglected, however when these semierﬁpiricol
parameters are introduced, the only criteria for their accuracy is, of course, agree-
ment with available experimental data. This section will consider the distortion of
the neutral atom by the outgoing electron and develop a polarization potential from
this interaction which describes the effect of the polarized atom on the scattered
electron. First order perturbation theory will be used in conjunction with the
adiabatic -approximation.

The adiabatic model is based on the ability of the neutral atom to polarize
in response to the instantaneous position of the outgoing electron. Thus assumes that
the velocity of the free electron is small compared to the orbital velocity of the
bound electrons. Since the energies of the outgoing detached electron are smali
(~10 ev or less), the bound state wave functions have sufficient time to adjust or
respond to the influence of the perturbing field. This method has been applied to
yield the low energy scattering cross section for electron-cesium atom collisions by
Garrett and Monn]8 and very recently to electron scattering from lithium and sodium

by Garrett. 16

18W. R. Garrett and R. A. Mann, Phys. Rev. 130, 658(1963).
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2., Formulation of the Problem
Consider a bound electron of the negative ion as having been detached so
that the system now consists of a neutral atom and a free electron of relatively low
energy.

The Hamiltonian for the entire problem is
H = Ho(r) + Hf(rf) + WI(F, rf). (3.1

Ha is the Hamiltonian for the atom, H, is the free-particle Hamiltonian, and W

f
the interaction Hamiltonian representing the interaction of the outgoing electron
with the bound electrons.

VA
W(F, Ff) = I (3.2)

The vectors e and Fi represent the positions of the free electron and one of
the bound electrons, respectively.
Initially a one-electron atom will be considered and this will then be ex-

tended to an atom with atomic number Z.
H 3.0 = E 3 @, @.3)

where the eigenvalue Eo and the normalized eigenfunction @o(r) for the neutral
atom are supposedly known.

The Schrédinger equation for the complete system may be written as
[H() + HG) +WE, Tl ¥ 7)) =E v (7, (3.4)

where ¥ (r, Ff) is the complete wave function for the system.

Neglecting exchange, the complete wave function may be written
WG 7 = 2GR V), 3.5)

where the perturbed wave function, % (r, Ff), for the bound state considers the

influence of the perturbing field by its dependency on Ff and W(Ff) is the
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free-particle wave function. The perturbed wave function will now be written as
8(, 7 = 8 () + x(r,rp, (3.6)

where QO(F) has previously been defined and X(r, Ff) is the perturbed part of the
orbital wave function resulting from the outgoing electron which is at the position

Ff. The requirement is also imposed that
<3 ,X>=0. (3.7)
The Hamiltonian for the entire problem may now be written as
[H® + HG) + W, )] [8 () + x(, 7] 46
= Ele () +XG, P W6, (3.8)

3. The Polarization Potential
*
If the above equation is multiplied from the left by @o* GR (Ff) ond inte~

grated over all space, the following result is obtained
v, <5°: W§°> V> + 4 <¢°: wxX> ¥ + <y, Hf‘l’> = (E- Eo) <V, ¥>(3.9)

where use has been made of the facts that Qo is normalized, @o and X are ortho-
gonal and hermitian, and <I>° is the eigenfunction of Ha with eigenvalue Eo°
Considering the first two terms in the above equation, the first represents the
mutual interaction energy of the outgoing electron with the atomic electron and the
second term is identified as the mutual interaction of the free electron with the per-
turbation of the atomic wave function. Therefore the polarization potential seen by

the outgoing electron due to the distortion of the atom is
Vp(rf) = <§°, wX>. (3.10)

Equation (3.9) may be written in the form
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¥ (He +E_+<8 ,we >+<2 , wX>=- E) > =0,
From this it follows that

E=E°+E +<§o,w¢°>+<§°,wx>, (3.11)

f

and substituting the result for E from the above equation into equation (3.8) and

simplifying

+ + = + +
\hHFX w@ox H°X¢ [EOX <§o,w§o>§o <§o,w{>o>x

+
+ <@o, wx> 3 <e, wx>X] ¥. (3.12)

This equation may now be simplified by making use of the adiabatic approximation
mentioned at the beginning of this section. Since the Hamiltonian for the free
electron changes relatively slowly, then solutions of the above equation will be
obtained by fixing Fer thus V2 re= 0. This results in the first term of the above

equation being zero. This equation now becomes
[(Ha - Eo) Xy = [<¢°, wd >+ <3 , wX> - w] (@o +X) ¥, (3.13)

The interaction w(r, Ff) can now be considered as a perturbation on the
unperturbed system H . Since this term as well as the polarization perturbation
X is small, then only terms through first order will be retained in the differential

equation for determining X. With this approximation equation (3.13) becomes

-
-
U

-1

(H, 0 - ETXE, 7 = <o (), Wi, 7) s - wE, 7)1 2 (). (3.14)
4, Multielectron Atom

For a multielectron atom the polarization potential will be developed from
first order perturbation theory utilizing a modified form of the Hartree-Fock theory.

The Hamiltonian for the complete atom will be written as follows:
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10 = IHQ
where

i = =) ) = @)+ TLHE) T 6o 4R

i i
* o7 2 - -

Hi(Fi) depends on the coordinates of the ith electron and the average effect of the
other electrons. The first term is the kinetic energy of the ith electron, the second
term is the potential energy in the field of the nucleus where r. is the distance from
the nucleus to the ith electron, the third term is the repulsive coulomb potential
interaction between the ith and Z~1 other electrons. A spherical average of this
repulsive interaction is taken. The final term is the exchange integral which arises
from using determinantal functions in the Hartree-Fock model. The wave function

for the atom will then be written as a determinant
5.() =D|6,Eayiy) - - 8 (). (3.16)

with

H.¢. = E. ¢.. (3.17)
The complete wave function is written
8+ X =Dy +X) (6, +X5) "+ - (o +X )| (3.18)

where

<¢.s %> =0 and <4, 9> = 1. (3.19)
Utilizing this madel the first order equation (3.15) becomes

(H. - E)X. (5, ) = [<g,, w6, >= w1 (), (3.20)
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where

W=ZW. and W, = s
i i ll

Equation (3.20) is the differential equation for determining the perturbation )(i of
the single electron orbital ¢ of the neutral atom. The total polarization potential

is then

Vp(r-f) = ZI S $. W, Xi d'ri, (3.21)

or

(ACES: vpi 7.

This polarization potential can thus be calculated for an atom by considering
the contribution due to each orbital which is determined from the modified Hartree-
Fock solution for the atom. |

An estimate of the exchange term in the Hartree~Fock theory can be obtained
very conveniently by using wave functions given by the Thomas-Fermi model of the
atom. 19 This is known as the simple Slater approximation. The essential features
of the Hartree-Fock method are retained by replacing the exchange potentials by a
universal exchange potential. This is obtained by suitably averaging over the in-
dividual exchange potentials to get an average charge density and exchange poten-
tial. This average of exchange potential is spherically symmetric and may be rep-

resented by
oo~ 1/3
o2 560 61" 6. (3.22)
R

When equation (3.22) is inserted into (3.15) very close approximations to the
Hartree-Fock solutions are obtained. Agreement of the subsequent calculated
photodetachment cross-sections and scattering cross sections with experimental

data provide a useful criterion for the validity of this model.

195 c. Slater, Quantum Theory of Atomic Structure, Vol. I, McGraw-Hill,
New York, 1960.
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5. The Radial Equations

At this point the differential equation for determining X, for an orbital

may be written as

(Hi = Ei) Xi(F}r Ff) = |:<¢il %;¢i> - —;]d’ (r) (3-23)

This equation can be separated and the radial equations for the various angular
momentum states written. A coordinate system is chosen which has the Z-axis
parallel to the position vector re of the outgoing free electron. The interaction

2/rif can be written as polynomials in terms of P)‘(cos 9“_.) by making use of the

expansion
A
1/2 2r
v 4r - <
L) T Y 80
if A r
>
2 2< rz 2 ‘
=._. 7. ose+—(3cos 0-1) + ¢ «, (3-24)
> r
> >

where r¢ is the lesser and N the greater of . and e

order terms in the above expansion will be dropped leaving only the first two terms

The quadrupole and higher

in the series. When these two terms are substituted into the bracketed term of
equation (3.20), the term becomes

2r

[f 65G) 2 6.G) dr. - 2 - —S cos 8. (3.25)

A ML R i r 2
> > r>

It can now be noted that the first term above can be written as

f
S J ¢i* (,‘b r2 drdQ + f f ¢i* %¢i r2 drdQ. (3.26)
fQ o Q Ty i
Since the ¢; 's are normalized the first term in the above equation goes to 2/r for
large values of re and the second term goes to zero. The 2/r term then colcels

the second term in the equation leaving only the dipole term (2r ry ) cos 6. For

smaller valves of Fer the monopole term becomes appreciable but W||| be small



2]

compared to the coulomb potential term. Thus the dipole approximation will be
made at this point and only the third term in equation (3.25) will be retained.

The following pair of equations is now obtained for determining the perturbed

wave Xi.
2 _ _ o 2ri _
-Vi + V(ri) - As(ri) - Eo Xi(ri’rf) = = —5 cos ) ¢>i(ri) for rf>ri, (3.27q)
f
and

2 - - - 2rf -
[— Vi + V(ri) - As(ri) - Eo} Xi(ri’ rf) = -~ cos ) ¢i(ri) for ri>rf., (3.27b)

r.
|

where V(r_i) is the coulomb potential and AS(F;) is the Slater exchange term. These
may now be solved and the solutions joined at Fp=rcto obtain the first order pertur-
bation of each electron orbital 9 The dipole polarization potential may now be

determined from equation (3.21).

2r ‘
- _ * = < - -
Vp(rf) = )I: S ¢i (ri) r—2 cos 6 Xi(ri, rf) dTi’ (3.28)
>

The individual perturbation of the electron orbitals for the various allowed
angular momentum states must now be considered. First, equations (3.27) will be
reduced into radial equations and appropriate radial integrals by writing ¢, and X,

in the form

8E) =R, Yy ©6,9), (3.29)

and
m-m’ m’

xi(Fi, Ff) =3I X, fr.,r Yl, (8, ¢), (3.30)

c.
o L1 S

and for convenience the following change invariables will be made

P/ =R (),

and
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Un!—hl’(r’ rf)/r = an_’l,(r, rf) (3.31)

When these functions are substituted into the differential equations (3.27), they

separate into the following two radial equations

2r

2 ’ &t

d P+ 1) - - g

2 - = V) - AL - ETUL ) = :—f P (). 8.32)
i i >

This is actually two equations for P> and r, > e which must be solved and
matched at o= re The constants C in equation (3.30) are determined by the
Clebsch-Gordon coefficients which occur in the angular integrations. These
coefficients are zero20 unless AR=X1 forL #0 and Al=1 forQ=0. The

polarization potential can now be written as

r
f
- 2
vpnl—»l'(rf) = Knl—%' r—2 {; Pn!(ri) Ut (ri, rf) dr,
f
@ -2
* e f gl Vgt o dri] ' (3.33)

or
VE)=I Vg, o).
p f Y P~ f
In the above equation, K depends on 2 and the number of electrons in a given nl
shell. These constants have been tabulated by Sternheimer.zo The accuracy of the

polarization potential can be conveniently checked by noting that as re— ©, \Y

4 . : N P
should approach the value -a/r where a is the dipole polarizability. A value of
-]
N 7A? A3 wime Ahbstnad or tha avunen rtam ne camnarad $a the latack avnarimantal
lelelele Vi W WL PN 1 L] LR RAS v’\,vi‘ll W Wl VY vvlllr\-lvu T i ENWA W \'l\rvl IFI I g IS WA
93 21
value of 0.77 A™.

20p. M. Sternheimer, Phys. Rev. 96, 951 (1954).
21R. A. Alpher and D. R. White, Phys. Fluids 2, 153 (1959).
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6. Polarization Calculations

The unperturbed wave functions used to calculate the polarization potential
were taken as the Hartree-Fock-Slater functions obtained from a program originally
written by Herman and Skillmcm22 and modified by Garrett, This program furnished
the functions V(r), As(r), Eo and Pnl(r) in equations (3.32) to calculate the pertur-
bations Unl—*!.' of an orbital whose radial function is Pnl' ), )

The electronic configuration of the normal oxygen atom is (1s)” (2s)” (2p) .
The total polarization was taken to be that contributed by the two outermost 2s and
2p shells. The 2s shell, in Sternheimer's notation, can undergo the perturbation

2s - p and the radial equation must be solved for U This notation indicates

2,0~1°
the unperturbed character is s being perturbed in such a way that the perturbed wave
U has p character. There are two modes of excitation for the 2p electrons, 2p —d

and 2p —+s, and the radial equation must be solved for the perturbations U
and U2' 1-0°

of these three perturbations for each value of re to obtain the polarization potential

2,1-2
Thus the pair of equations (3.32) must be solved and matched for each

as a function of Fee This obviously involves a great deal of computation time. In
the actual solution the unperturbed equations were solved over a 441 point mesh for
r. and for 110 or every fourth point for Fee An interpolation program was then used
to bring the polarization potential Vp(rf) back to a 441 point mesh system to be
compatible with the functions necessary for obtaining continuum wave solutions for
the outgoing electron.

Before completing the discussion on the polarization potential, a brief ex-
planation of the matching procedure used to solve equations (3.32) will be given.
The numerical integration scheme contains an arbitrary constant in the series expan-
sion used to start the caicuiations. This paramefer is varied auiomaticaily in the
computer program until the radial functions and their derivatives match at o=
and the solution decreases exponentially at infinity. |n practice, the choice was

narrowed by repeated iterations until an accuracy of five to six significant figures

was achieved in the starting values.

22F, Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1960.
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7. Polarization Results
The polarization potential Vp and the electronic polarizability « are deter-
mined by first solving the set of equations (3.32) for the three perturbed radial
functions Un!.—»[' Each equation is of the form
2
d Unl.—>1'

2

+ f(r) U
dr n

!_>L' = g(r)l

and must be joined at the boundary A PS

At large values of r, the polarizability was computed from the relation a =
Vp r4. When a became constant, the integration of equation (3.33) was terminated.
The following values were obtained for the radial portion of the integrals r4R(n1—>l')

in the asymptotic region.
4
r R(oo)(2s—p) = ~1.12235,

AR(@)(@p>s) = 0.575515,

*R(c0) (2p—~d) = -0.843395.

.20 . . . . .
Sternheimer ~ gives the following coefficients for the various contributions

to a for each electron at a large distance from the nucleus.

oommad
o
o
>
(6]

where
a(nt~ '.') = K r4R(cn) (nd— Q')

Thus, in the model being considered the oxygen atom has two 2s electrons and the

value of a(2s—+p) and the polarization potential for the orbital is given by



a(2sp) = 2(3) r*Rco) 2s-p),

V() @s->p) = 2 (3) RE)(2s-+p) .

25
2, |m|=0

2, |m|=0

There are four 2p electrons and the value of a(2p-s), a(2p—~d) and the polarization

potential are similarly obtained by multiplying by the angular coefficients for the

various allowed values of the magnetic quantum number m and averaging over these

states. There are three states these electrons may assume.

1. All electrons with |m| =

a2p+d) = 4() r*R(e)2p—d),
4
V_()2p~d) = 46 R()(2p—d).

2. Three electrons with |m| =1, one withm =0

a2p~d) = 3@ r* Rico)(2p~d),
4
V. ()2pd) = 36) RE)(2p--3),
alZo-d) = 163) r* R@)(2p~),
16
Vp(r)(2p"d) = 113 R(N(2p~d),
a2p+s) = 1) r* Rle)(2p—s),

\4 (r)(2p->5) 1(—) R(r)}(2p—>s).

(5]

m} =1, two with m =0.

alZp~d) = 26) r*R@)(2pd),
4

V_()(2od) = 26) ROpa),

a(2p~d) = 2(2) 1 R(e) (2o,

v (r)(2p-*d) = 2( ) R(r)(2p—~d),

4, |m] =0

4, |m|=0

3, |mj=1
3, Im| =1
1, |m}=0
1, |m|=0
1, |m|=0

1, |m|=0

2, |m|=1
2, |m|=1
2, |m|=0

2, |m|=0
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a2p~+s) = 2(3) r*Re)(2p— ), 2, |m| =0
v (0@2p—s) = 2 R()Zp— ). 2, |m| =0

The polarizability is then obtained by adding the contribution from the 2s
orbital to the average contribution from the 2p orbital. If the polarizabilities com-
puted from items 1, 2 and 3 above are all summed and divided by three and this
added to the contribution from the 2s orbital, a value of 5.1493 a 3 is obtained.
Taking a = 0.522;]& gives a value of a = 0.767»&3. The latest experimental value

3
is0.77 3,006 A.%" The polarization potential is obtained in a similar manner and

is shown in Figure 1.
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CHAPTER IV

BOUND STATE FUNCTIONS

1. Introduction

The bound state radial functions for the negative atomic oxygen ion must
be accurately determined in order to calculate the dipole matrix elements, equation
(2.26). In calculating these matrix elements the 2p eigenfunctions of the ion are
required. The eigenfunctions for the neutral atom are also required to compute the
overlap integral equation (2.29) for the passive electrons. In the present calcula-
tions the modified Hartree-Fock-Slater equations utilizing the free-electron exchange
discussed in Chapter |ll were used to compute the self-consistent solutions for each
orbital by varying the exchange potential until the correct eigenvalues were obtained.
Simple product functions were then used to describe the complete state of the atomic
system. The computer program for carrying out the computations was originally writ-
ten by Herman and Skillmc:m22 and modified by Garrett. The same radial wave func-

tion is used for both sets of spins for a particular nk orbital.

2. Method of Solution
With distances measured in Bohr units and energies in Rydberg units, the

Hartree-Fock wave equation is written]
-9 2 + VE) - ARG = E 6, @)

where V(Fi) is the sum of the nuclear and electronic coulomb potentials

VE) =T IS K ®) = 4 o, (4.2)

and the exchange potential is given by
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A WE) BE) = I UK L6 2 66 w6 dnl k6. 4.3
! if

The exchange integrals are now replaced by a term known as the Slater ex-
19 L
change potential ' * which is, of course, somewhat less accurate, but makes the

equations much simpler for computation purposes.

- - |3 - N R VZ
AV HE) = 8l5 T v@ RO 46, (4.4)
These equations are reduced to radial equations by writing the function
_ P (rk) m
WG =2 v (e 9. (4.5)

With this substitution the differential equations separate into the radial equations

2

vy D a [ ) = EP ), 40
dri r.
where it is required that
©p 2y dr =1 (4.7)
',;, nL (r) dr = 1. .

These radial equations were numerically solved using a 441 mesh point

1/3.

til a set of self-consistent potentials was obtained. The Slater exchange potential

coordinate system scaled to Z~ The system of equations was then iterated un-

was varied until the correct eigenvalues for both the atom and ion were obtained.

2. Results

The results for the 2p orbitals of the neutral atom and ion are shown in
Figure 2. The results of the overlap integral for a single passive electron gave a
value of 0.9575 and the square of the matrix element taken over all four electrons

gives the subsequent value of 0.7064.

17p e T g = 0.9575. (4.8)
o 2 2
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CHAPTER V

CONTINUUM WAVE FUNCTIONS

1. Introduction

The free wave radial equations for the outgoing electron of energy k2 must
be evaluated ot various energies and used in equation (2.26) to evaluate the My's
used in obtaining the photodetachment cross section, equation (2.28). Since a 2p
electron is detached, then this electron must have an angular momentum quantum
number of L =0 or £=2 corresponding to an s or d wave, respectively. The shape
of these functions, particulorly the s waves, is very sensitive to the potential func-
tion used in the calculations. The s-state scattering is the major contributor to the
cross section at relatively low energies. Thus, because of the absence of the centri-
fugal potential, the total interaction potential which includes the polarization
potential strongly affects the scattering phase shift (85) which in turn aoffects both
the magnitude and spectral dependence of the cross section. The interaction poten=
tial acting on the detached electron is taken to be the potential obtained from the
modified Hartree-Fock-Slater method for the ion plus the polarization potential
calculated in Chapter lll.

This chapter will duscuss the method of obtaining the free wave solutions,
, the calculation of the phase shifts which are used
to calculate the scattering cross section of neutral oxygen and list some of the

typical results,

2. Method of Solution
In this formulation the problem is to determine the radial functions which

satisfy the Schrédinger radial equation
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o2 2L+ 1)

2
— + V(r) + Vp(r) - 3 + k Pk!. r) =0, (5.1

dr2 r

where Pkl(r) = rRkl(r) and which have the asymptotic form

Pkl(r) —_— k-] si'n(kr -'4211 + Sl)' (5.2)

kr—>

For a given partial wave, equation (5. 1) is solved by the Numerov process for

. 2 .
various values of the energy k™ over the same coordinate mesh as that of the Hartree-

Fock=-Slater program which furnished the unperturbed bound functions. The arbi-
trary constant used in the starting series expansion was adjusted to give the correct
asymptotic behavior at large values of kr, equation (5.2). The numerical inte-
gration was continued until the ratio VT/|<:2 < 10_4 at r =Ro was reached, where
VT is the total potential. At this point the absence of a scdftering potential was
assumed and the solutions of equation (5.1) may be obtained analytically subject
to the boundary condition (5.2) and by joining the numerical solution with the

analytical ot Ro'

3. Method of Normalization
In the region where the scattering potential is taken to vanish, the radial

equation (5.1) can be written

2
d ME+1) 2 -
[_er - r2 + k :‘ Pkl(r) = 0. (5.3)

1/2

By making the change in variables X =kr and Y = X"/ “P, equation (5.3) can be

> fead
Transrofmed iii

XYY" + XY + [xz - (Q+%)2]Y =0, (5.4)

b 17209+ BIg_ ), (5.5)
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where the J's are half-odd order Bessel functions. Transforming this equation

back to the variables kr and Pkl(r)’ it becomes
P () = AVkr e jpten) + By/kr I_g 120k (5.6)

For the photodetachment process, the s and d waves are of interest. These half-

odd order functions are listed below.

{| v T 941,20 Vv 7 _g- 1%

0 sin X cos X

2 (= -1 sinx-(g)cosx (3)sinx+(-§-2——])cosx
x

X

The s and d wave solutions of equation (5.3) may now be written

PSk = Assin (kr) + Bs cos (kr), (5.7q)
or
Psk = Cssin (kr +85), (5.7b)
and
. 3 . 3 3 3 .
Pdk —Adg [(k )2 - ]] sin kr-Ecos kr +Bd l:(k )2 - 1:} cos kr +-E sin kri
' r (5.84q)
or
P = C [ - 1] sin (er +8 ) - 2 cos kr +5d)$, (5.8b)
Un Ul I-(kr)z. -I ~ e )
where
2 2 1/2
C.=(A" + Bi ) and tan Si = Bi/Ai'

Note that each of the equations (5.7b) and (5.8b) have the asymptotic behavior

]

Py) —— K sin (kr -gl +5,),

kr - o
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where each of the coefficients C are chosen as k-] . The normalization and deter-
mination of the phase shifts are now easily accomplished by numerically integrating
equation (5.1) until the scattering potential vanishes and then utilizing two points
of the computed eigenfunctions, Pkl(rl) and Pkl(r2) in this region to determine the
coefficients in equations (5.7a) and (5.8a). The normalized continuum functions

P are now obtained from the unnormalized solutions Pu by the relationship

P
P = Y ’ (5.9)
N Al +83) 7%
and the phase shifts from the relationship
§ = tan” | B/A, (5.10)

at each of the various energies for the desired partial wave. This method guaran-
tees the correct normalization and is advantageous in that the numerical integration

need not extend beyond a prescribed point since numerical errors can accumulate.

4. Results

The phase shifts for several of the partial waves at various electron energies
are tabulated in Table |I. Figures 3 and 4 show typical s and d free waves at two
values of the energy k2 of the outgoing electron. The total potential function

V(r) + Vp(r) used in the calculations is shown in Figure 5.
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CHAPTER VI

RESULTS

1. Photodetachment Cross Section

The results of the photodetachment cross section calculations are shown in
Figure 6 along with the experimental results of Branscomb, Smith and Tisone8 and
Smifh.9 It should be pointed out that the results of the crossed-beam experiment
of Reference 8 at the higher energies should be eyed with caution since photo-
electric effects from the walls of the instrumentation make calibration difficult
above 3.7 ev.8

At higher photon energies the oxygen atom may be left in the excited ]D
or ]S states of the ground "configuration.” Using the appropriate values of the
binding energy Eb and the Cy's in Table |, estimates of the cross section are ob-
tained by performing the same set of calculations that leave the atom in its 3P
ground state. These results are plotted in Figure 7 where the results of this paper
are compared with the theoretical results of Cooper and Martin.

The method of Klein and Brueckner assumes that the d-wave shifts are small
and may be considered zero in the energy range of their investigation. They thus
use the Born approximation, equation (5.8b) with Sd =0, for the continuum d-
wave. They also define a range of interaction R and consider ihe int

equation (2.26) to be zero for r<R (R = 300). Outside this region the bound-state

wave function is taken to be the tail of the radial wave function.

1/2r

_Eb
_ Ne 1
R2P = —I'_ 1 +E7§— ‘ (6.])

b r

where N is the normalization constant.
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Schrédinger's radial equation with a polarization potential of the form

1 P
V == s, 6.2)
p 2 (r2 +rp2)2

was used to calculate R2P out to r =R, In equation (6.2) A is the screening
distance (1.2 atomic units) and P is the polarization parameter which included
exchange effects. P was varied until a good fit was obtained. This procedure
gave a value of P = 5,589 atomic units and N = 0,374. Numerical calculations
of the free s~waves were then made for a few energies and fitted to the effective-

range formula

112
kCOfSS—-; +§rok . (6.3)

The effective~range (ro) and scattering-length (@) were found to be 0.860 and
0.613 atomic units respectively. From this the value of & at other energies was
computed. Knowing the phase shifts and using the asymptotic forms of the free
and bound states, a closed form solution for the photodetachment cross section was
then derived.

Cooper and Martin's method follows along the same lines with the excep~
tion of not using the asymptotic approximations previously mentioned. Schrédinger's
equation for the bound state was solved treating the polarization parameter as an
eigenvalue. The binding energy was assumed known. The equation was integrated
out to approximately 20 a, and the polarization parameter adjusted until the function
approached zero asymptotically. This gave a value of 5.499 for rp =1.2. Numeri-
cal integrations were then performed to caicuiate the free s-states, bound state and
s-wave phase shifts. The d-wave phase shifts were also taken as zero in thie formu-
lation.

The average value of these two polarization parameters was used to compute
the polarization potential for these models. The results are shown in Figure 8. The
results of this paper are compared with those of Cooper and Martin, and Klein and

Brueckner in Figure 9.
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2, Scattering Cross Section for Oxygen
The elastic scattering of electrons by oxygen is calculated by the method
of phase shifts and compared to various other available data. The phase shifts are
tabulated in Table Il. In units of naoz, the scattering cross section is
o =

E 28+ 1) sin28 6.4)

L.

x'Ml N

A detailed discussion of the various available results would be out of place
in this paper. A comprehensive study to attempt to determine the latest reliable
data over the energy range shown in Figure 10 was not undertaken for this paper
and only the results shown in this plot were immediately available for comparative
purposes. However, at the higher energies agreement with the experiment of
Neynaber, Marino, Rothe, and Truii||023 is relatively good .as well as the single
point of Lin and Kivel24 at the low energy portion of the curve. Figure 10 also

shows the theoretical results of other authors‘}’é' 10,25-27 Each of these contains

23

the s and p wave contributions as explained by Neynaber, et al.

3. Electron Affinity Calculations

The reverse process of photodetachment is the capture of a free electron by
a neutral atom and the emission of radiation. By following an argument very similar
to that outlined in Chapter |l the attachment cross section for the above process may
be derived. If this is carried through the photodetachment cross section and the

cross section for attachment are related by the following expression

23. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M. Trujillo, Phys. Rev.
123, 148(1961).

243, C. Lin and B. Kivel, Phys. Rev. 114, 1026 (1959).

25p, Hammerling, W. W. Shine, and B. Kivel, J. Appl. Phys. 28, 760 (1957).
261, B. Robinson, Phys. Rev. 105, 922 (1957).

27A. Temkin, Phys. Rev. 107, 1004 (1957).

28R, s. Berry, J. C. Mackie, R. L. Taylor and R. Lynch, Spin-Orbit Coupling
and Electron Affinity Determination From Radiative Capture of Electrons by Oxygen
Atoms. Research Report 216, AVCO-Everett Research Laboratory, July 1965.
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E
2
pp = 3me E—ef o, (6.5)
b

In studying the emission of radiation from the above process, the rate of emission
of energy hv per unit of frequency is

Iv)/hy = G, V, nle) n(0O°) P,/ (6.6)

where n(e) is the concentration of electrons, n(O°) the concentration of absorbers
and Pe is the energy distribution of the electrons. The quantity Sy Ve is called
the attachment coefficient and is of interest in practical applications. This coeffi-
cient, Cpr and the absorption cross section have been computed from the previous
results and are shown in Figures 11 and 12 and compared with results given by

Bo'res.29

29D, R. Bates (ed.) Atomic and Molecular Processes, Academic Press, New York,
1962, pp. 132-133.
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CHAPTER VII

CONCLUSIONS

The excelient agreement of the present results with the experimental photo-
detachment data of References 8 and 9 in the region up to photon energies of 3.4
ev argues favorably for the validity of the present model. This coupled with the
agreement of the scattering cross section at higher energies and the additional fact
that the polarizability calculations agree so well with experiment is indeed firm

confirmation for the validity of the present work.
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TABLE 11
Photodetachment Cross Section

hv (ev)
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